Most existing approaches to train a unified multi-organ segmentation model from several single-organ datasets require simultaneously access multiple datasets during training. In the real scenarios, due to privacy and ethics concerns, the training data of the organs of interest may not be publicly available. To this end, we investigate a data-free incremental organ segmentation scenario and propose a novel incremental training framework to solve it. We use the pretrained model instead of its own training data for privacy protection. Specifically, given a pretrained $K$ organ segmentation model and a new single-organ dataset, we train a unified $K+1$ organ segmentation model without accessing any data belonging to the previous training stages. Our approach consists of two parts: the background label alignment strategy and the uncertainty-aware guidance strategy. The first part is used for knowledge transfer from the pretained model to the training model. The second part is used to extract the uncertainty information from the pretrained model to guide the whole knowledge transfer process. By combing these two strategies, more reliable information is extracted from the pretrained model without original training data. Experiments on multiple publicly available pretrained models and a multi-organ dataset MOBA have demonstrated the effectiveness of our framework.


翻译:在实际情况下,由于隐私和道德问题,可能无法公开提供感兴趣的机构的培训数据。为此,我们调查无数据递增器官分割设想方案,并提出一个新的递增培训框架来解决这个问题。我们使用预先培训模式而不是自己的培训数据来保护隐私。具体地说,鉴于预先培训的1K美元器官分割模式和新的1个单一机构数据集,我们培训一个统一的1K+1美元的器官分割模式,而没有获得属于前几个培训阶段的任何数据。我们的方法由两部分组成:背景标签调整战略和不确定性意识指导战略。第一部分用于从预设模式向培训模式进行知识转让。第二部分用于从预培训模式中提取不确定性信息,以指导整个知识转移进程。通过对这两项战略进行梳理,从预培训模式中提取更可靠的信息,而没有原始的培训数据。实验了多种公开提供的预设模型和多机组数据配置框架。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员