The smooth bootstrap for estimating copula functionals in small samples is investigated. It can be used both to gauge the distribution of the estimator in question and to augment the data. Issues arising from kernel density and distribution estimation in the copula domain are addressed, such as how to avoid the bounded domain, which bandwidth matrix to choose, and how the smoothing can be carried out. Furthermore, we investigate how the smooth bootstrap impacts the underlying dependence structure or the functionals in question and under which conditions it does not. We provide specific examples and simulations that highlight advantages and caveats of the approach.


翻译:调查用于估计小样本中干椰子功能的光滑靴子,可以用来衡量有关测算员的分布情况并增加数据;处理在干椰子域内因内核密度和分布估计而产生的问题,例如如何避免封闭域,选择哪个带宽矩阵,以及如何进行平滑;此外,我们调查光滑靴子如何影响基本依赖结构或有关功能,在什么条件下不这样做;我们提供具体的例子和模拟,突出该方法的优点和洞察力。

0
下载
关闭预览

相关内容

数据资产化前瞻性研究白皮书
专知会员服务
46+阅读 · 2021年11月19日
专知会员服务
145+阅读 · 2021年2月3日
专知会员服务
51+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年11月30日
Arxiv
0+阅读 · 2021年11月28日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员