Recently deep learning has achieved significant progress on point cloud analysis tasks. Learning good representations is of vital importance to these tasks. Most current methods rely on massive labelled data for training. We here propose a point discriminative learning method for unsupervised representation learning on 3D point clouds, which can learn local and global geometry features. We achieve this by imposing a novel point discrimination loss on the middle level and global level point features produced in the backbone network. This point discrimination loss enforces the features to be consistent with points belonging to the shape surface and inconsistent with randomly sampled noisy points. Our method is simple in design, which works by adding an extra adaptation module and a point consistency module for unsupervised training of the encoder in the backbone network. Once trained, these two modules can be discarded during supervised training of the classifier or decoder for down-stream tasks. We conduct extensive experiments on 3D object classification, 3D part segmentation and shape reconstruction in various unsupervised and transfer settings. Both quantitative and qualitative results show that our method learns powerful representations and achieves new state-of-the-art performance.
翻译:最近深层次的学习在云层分析任务方面取得了显著进展。 学习良好的表现方式对于这些任务至关重要。 目前大多数方法都依赖于大量标记的培训数据。 我们在此提出在三维点云上进行不受监督的代言学习的有区别的学习方法, 它可以学习本地和全球几何特征。 我们通过在中层和全球一级主干网产生的点特征上强加新的点歧视损失来实现这一点。 点歧视损失使得这些特征与形状表面的点相一致,并且与随机抽样的噪音点不相符。 我们的方法在设计上是简单的,它增加了一个额外的适应模块和一个点一致性模块,用于在主干网中对编码器进行不受监督的培训。 一旦经过培训,这两个模块可以在监督的分类师或下流任务解码师的培训中被丢弃。 我们在3D对象分类、 3D部分分割和在各种不受监督和转移的环境中进行广泛的实验。 定量和定性结果都表明,我们的方法学习了强大的表达方式,并实现了新的状态表现。