Dialogue state tracking (DST) is an important step in dialogue management to keep track of users' beliefs. Existing works fine-tune all language model (LM) parameters to tackle the DST task, which requires significant data and computing resources for training and hosting. The cost grows exponentially in the real-world deployment where dozens of fine-tuned LM are used for different domains and tasks. To reduce parameter size and better utilize cross-task shared information, we propose to use soft prompt token embeddings to learn task properties. Without tuning LM parameters, our method drastically reduces the number of parameters needed to less than 0.5% of prior works while achieves better low-resource DST performance.
翻译:对话状态跟踪( DST) 是对话管理中跟踪用户信仰的重要一步。 现有的工作微调所有语言模式参数( LM) 来完成 DST 任务, 需要大量数据和计算培训和托管资源。 在实际部署中, 数十个微调 LM 用于不同领域和任务, 成本成倍增长。 为了降低参数大小并更好地利用跨任务共享信息, 我们提议使用软性即时符号嵌入来学习任务属性。 在不调整 LM 参数的情况下, 我们的方法将所需的参数数量大幅降低到低于先前工程的0.5%, 同时实现更好的资源低的 DST 性能 。