We study finite-sum nonconvex optimization problems, where the objective function is an average of $n$ nonconvex functions. We propose a new stochastic gradient descent algorithm based on nested variance reduction. Compared with conventional stochastic variance reduced gradient (SVRG) algorithm that uses two reference points to construct a semi-stochastic gradient with diminishing variance in each iteration, our algorithm uses $K+1$ nested reference points to build a semi-stochastic gradient to further reduce its variance in each iteration. For smooth nonconvex functions, the proposed algorithm converges to an $\epsilon$-approximate first-order stationary point (i.e., $\|\nabla F(\mathbf{x})\|_2\leq \epsilon$) within $\tilde O(n\land \epsilon^{-2}+\epsilon^{-3}\land n^{1/2}\epsilon^{-2})$ number of stochastic gradient evaluations. This improves the best known gradient complexity of SVRG $O(n+n^{2/3}\epsilon^{-2})$ and that of SCSG $O(n\land \epsilon^{-2}+\epsilon^{-10/3}\land n^{2/3}\epsilon^{-2})$. For gradient dominated functions, our algorithm also achieves better gradient complexity than the state-of-the-art algorithms. Thorough experimental results on different nonconvex optimization problems back up our theory.


翻译:在目标函数平均为$n的非convex 函数的情况下, 我们研究非convex 优化的定值问题。 我们根据嵌入差异减少, 提出一个新的 随机梯度梯度下位算法。 与常规的随机偏差降低梯度( SVRG) 算法相比, 该算法使用两个参考点来构建半随机梯度, 且每迭代差异减少, 我们的算法使用 $+1 +1 嵌入的参考点来构建半随机梯度, 以进一步降低每迭代中的差异 。 对于平滑的非conx 函数, 拟议的算法会以 $\ epslon $- pal- pal- port- port- pal- pal- port- slassion F( $\\ b{x{x}) 在 $\\ n\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年12月4日
Arxiv
0+阅读 · 2020年12月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员