For a class $\mathcal{G}$ of graphs, the objective of \textsc{Subgraph Complementation to} $\mathcal{G}$ is to find whether there exists a subset $S$ of vertices of the input graph $G$ such that modifying $G$ by complementing the subgraph induced by $S$ results in a graph in $\mathcal{G}$. We obtain a polynomial-time algorithm for the problem when $\mathcal{G}$ is the class of graphs with minimum degree at least $k$, for a constant $k$, answering an open problem by Fomin et al. (Algorithmica, 2020). When $\mathcal{G}$ is the class of graphs without any induced copies of the star graph on $t+1$ vertices (for any constant $t\geq 3$) and diamond, we obtain a polynomial-time algorithm for the problem. This is in contrast with a result by Antony et al. (Algorithmica, 2022) that the problem is NP-complete and cannot be solved in subexponential-time (assuming the Exponential Time Hypothesis) when $\mathcal{G}$ is the class of graphs without any induced copies of the star graph on $t+1$ vertices, for every constant $t\geq 5$.


翻译:对于一类 $\mathcal{G}$ 的图,\textsc{Subgraph Complementation to} $\mathcal{G}$ 的目的是找到输入图 $G$ 的一个顶点子集 $S$,使得通过对由 $S$ 引出的亚图求补得到的图属于 $\mathcal{G}$ 类。我们获得了一个多项式时间算法,当 $\mathcal{G}$ 是最小度数至少为 $k$ 的图类时,其中 $k$ 是一个常数。这个结果回答了Fomin等人提出的一个开放问题 (Fomin et al.,Algorithmica,2020)。当 $\mathcal{G}$ 不包含星形图(任意常数 $t\geq 3$ 的顶点数)和菱形图的诱导子图时,我们获得了一个多项式时间算法。这与Antony等人的结果形成了对比(Antony et al.,Algorithmica,2022),他们证明了当 $\mathcal{G}$ 是没有诱导 $t+1$ 个顶点的星形图($t\geq 5$)时,该问题是 NP-hard 的,并且不能以次指数时间解决(假设指数时间假设成立)。

0
下载
关闭预览

相关内容

专知会员服务
56+阅读 · 2021年1月26日
专知会员服务
123+阅读 · 2020年9月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
49+阅读 · 2020年12月16日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员