Despite significant research, robotic swarms have yet to be useful in solving real-world problems, largely due to the difficulty of creating and controlling swarming behaviors in multi-agent systems. Traditional top-down approaches in which a desired emergent behavior is produced often require complex, resource-heavy robots, limiting their practicality. This paper introduces a bottom-up approach by employing an Embodied Agent-Based Modeling and Simulation approach, emphasizing the use of simple robots and identifying conditions that naturally lead to self-organized collective behaviors. Using the Reality-to-Simulation-to-Reality for Swarms (RSRS) process, we tightly integrate real-world experiments with simulations to reproduce known swarm behaviors as well as discovering a novel emergent behavior without aiming to eliminate or even reduce the sim2real gap. This paper presents the development of an Agent-Based Embodiment and Emulation process that balances the importance of running physical swarming experiments and the prohibitively time-consuming process of even setting up and running a single experiment with 20+ robots by leveraging low-fidelity lightweight simulations to enable hypothesis-formation to guide physical experiments. We demonstrate the usefulness of our methods by emulating two known behaviors from the literature and show a third behavior `discovered' by accident.
翻译:暂无翻译