We give an $O(k^3 n \ \textrm{polylog}(nC))$-time algorithm for computing maximum integer flows in planar graphs with integer arc and vertex capacities bounded by $C$, and $k$ sources and sinks. This improves by a factor of $k^2$ over the fastest algorithm previously known for this problem [Wang, SODA 2019]. The speedup is obtained by two independent ideas. First we replace an iterative procedure of Wang that uses $k$ invocations of a maximum flow algorithm in a planar graph with $k$ apices [Borradaile et al., FOCS 2012, SICOMP 2017], by an alternative procedure that only makes one invocation of the algorithm of Borradaile et al. Second, we introduce a new variant of the push-relabel algorithm of Goldberg and Tarjan and use it to find a maximum flow in the $k$-apex graphs that arise in Wang's procedure, faster than the algorithm of Borradaile et al.
翻译:我们给出了 $O( k ⁇ 3 n \\ textrm{polylog}(nC) 美元-时间算法, 用于计算平面图中以整弧和顶部容量受美元约束的整弧值和顶部容量以及美元和汇的最大限度整数流。 这比以前为这一问题所知道的最快算法[ Wang, SODA 2019] 提高了2美元。 加速由两个独立的想法获得。 首先, 我们用一个替代程序, 将王的迭接程序替换成一个反复程序, 该程序在平面图中使用美元最大流量算法, 用美元平面图[Borradaile等人, FOCS, 2012, SICOMP 2017], 该替代程序只能使博拉戴尔等的算法得到一次使用。 其次, 我们引入了黄金堡和Tarjan的推标算算算法的新变量, 并用它来找到在王程序上产生的美元- apex 图表的最大流量, 比波拉达利等人的算法更快。