Search is an important tool for computing effective policies in single- and multi-agent environments, and has been crucial for achieving superhuman performance in several benchmark fully and partially observable games. However, one major limitation of prior search approaches for partially observable environments is that the computational cost scales poorly with the amount of hidden information. In this paper we present \emph{Learned Belief Search} (LBS), a computationally efficient search procedure for partially observable environments. Rather than maintaining an exact belief distribution, LBS uses an approximate auto-regressive counterfactual belief that is learned as a supervised task. In multi-agent settings, LBS uses a novel public-private model architecture for underlying policies in order to efficiently evaluate these policies during rollouts. In the benchmark domain of Hanabi, LBS can obtain 55% ~ 91% of the benefit of exact search while reducing compute requirements by $35.8 \times$ ~ $4.6 \times$, allowing it to scale to larger settings that were inaccessible to previous search methods.


翻译:搜索是计算单一和多种试剂环境中有效政策的一个重要工具,对于在几个完全和部分可观测的游戏中实现超人性表现至关重要。 但是,对部分可观测环境的先前搜索方法的一个主要限制是,计算成本尺度与隐藏信息的数量相比差。 在本文中,我们展示了计算效率高的可部分可观测环境搜索程序 。 LBS 使用一种近似自动递减反事实的信念,作为监督任务学习。 在多试剂环境中, LBS 使用一个新的公私营模型结构来基础政策,以便在推出期间有效评估这些政策。 在Hanabi 基准领域, LBS 可以获得精确搜索的55%~ 91%的收益,同时将计算需求减少35.8 美元~ 4.6 美元,从而可以将其规模扩大到以前搜索方法无法进入的大环境。

0
下载
关闭预览

相关内容

基于位置的应用。通常与智能手机(移动终端)的应用相结合,如签到,查找附近的好友和服务等。
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员