A moplex is a natural graph structure that arises when lifting Dirac's classical theorem from chordal graphs to general graphs. However, while every non-complete graph has at least two moplexes, little is known about structural properties of graphs with a bounded number of moplexes. The study of these graphs is motivated by the parallel between moplexes in general graphs and simplicial modules in chordal graphs: Unlike in the moplex setting, properties of chordal graphs with a bounded number of simplicial modules are well understood. For instance, chordal graphs having at most two simplicial modules are interval. In this work we initiate an investigation of $k$-moplex graphs, which are defined as graphs containing at most $k$ moplexes. Of particular interest is the smallest nontrivial case $k=2$, which forms a counterpart to the class of interval graphs. As our main structural result, we show that the class of connected $2$-moplex graphs is sandwiched between the classes of proper interval graphs and cocomparability graphs; moreover, both inclusions are tight for hereditary classes. From a complexity theoretic viewpoint, this leads to the natural question of whether the presence of at most two moplexes guarantees a sufficient amount of structure to efficiently solve problems that are known to be intractable on cocomparability graphs, but not on proper interval graphs. We develop new reductions that answer this question negatively for two prominent problems fitting this profile, namely Graph Isomorphism and Max-Cut. On the other hand, we prove that every connected $2$-moplex graph contains a Hamiltonian path, generalising the same property of connected proper interval graphs. Furthermore, for graphs with a higher number of moplexes, we lift the previously known result that graphs without asteroidal triples have at most two moplexes to the more general setting of larger asteroidal sets.


翻译:当将Dirac的古典理论从相形形形图提升到普通图时,就会产生一个自然的图解结构。 然而, 虽然每个非完整的图解至少有两个双倍, 但是对于带有约束数双倍的图形的结构属性却知之甚少。 这些图的研究表明一般图解中的双倍和同色图中的简化模块之间的平行关系: 与双倍设置不同, 带有若干简化模块的圆形图的特性是完全理解的。 例如, 每个非完整的图解至少有两个双双倍的圆形图解是间隔的。 在这项工作中,我们对美元双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的双倍的图形。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年8月23日
Arxiv
0+阅读 · 2021年8月18日
Arxiv
8+阅读 · 2020年10月12日
Arxiv
3+阅读 · 2018年4月10日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员