The real life time series are usually nonstationary, bringing a difficult question of model adaptation. Classical approaches like ARMA-ARCH assume arbitrary type of dependence. To avoid such bias, we will focus on recently proposed agnostic philosophy of moving estimator: in time $t$ finding parameters optimizing e.g. $F_t=\sum_{\tau<t} (1-\eta)^{t-\tau} \ln(\rho_\theta (x_\tau))$ moving log-likelihood, evolving in time. It allows for example to estimate parameters using inexpensive exponential moving averages (EMA), like absolute central moments $E[|x-\mu|^p]$ evolving for one or multiple powers $p\in\mathbb{R}^+$ using $m_{p,t+1} = m_{p,t} + \eta (|x_t-\mu_t|^p-m_{p,t})$. Application of such general adaptive methods of moments will be presented on Student's t-distribution, popular especially in economical applications, here applied to log-returns of DJIA companies. While standard ARMA-ARCH approaches provide evolution of $\mu$ and $\sigma$, here we also get evolution of $\nu$ describing $\rho(x)\sim |x|^{-\nu-1}$ tail shape, probability of extreme events - which might turn out catastrophic, destabilizing the market.
翻译:摘要:现实生活中的时间序列通常是非平稳的,这带来了模型适应的困难问题。传统方法如ARMA-ARCH假设任意类型的依赖性。为了避免这种偏差,我们将重点放在最近提出的移动估计器的不可知哲学上:在时间$t$找到优化例如$F_t =\sum_{\tau<t}(1-\eta)^{t-\tau}\ln(\rho_{\theta}(x_{\tau}))$移动对数似然的参数,在时间演化中。例如,使用廉价的指数移动平均值(EMA)来估计参数,如绝对中心矩$E[|x-\mu|^p]$,使用一个或多个幂$p\in\mathbb{R}^+$的演算来进化,使用$m_{p,t+1}=m_{p,t}+\eta(|x_t-\mu_t|^p-m_{p,t})$。这种一般自适应矩方法的应用将在学生t分布上展示,这在经济应用中很受欢迎,在此应用于DJIA公司的对数收益率。当标准ARMA-ARCH方法提供$\mu$和$\sigma$的演化时,这里还得到了描述$\rho(x)\sim |x|^{-\nu-1}$尾部形状的$\nu$的演化,极端事件的概率,这可能会变得灾难性,使市场不稳定。