This technical report describes our first-place solution to the pose estimation challenge at ECCV 2022 Visual Perception for Navigation in Human Environments Workshop. In this challenge, we aim to estimate human poses from in-the-wild stitched panoramic images. Our method is built based on Faster R-CNN for human detection, and HRNet for human pose estimation. We describe technical details for the JRDB-Pose dataset, together with some experimental results. In the competition, we achieved 0.303 $\text{OSPA}_{\text{IOU}}$ and 64.047\% $\text{AP}_{\text{0.5}}$ on the test set of JRDB-Pose.
翻译:这份技术报告描述了我们在ECCV 2022人类环境导航视觉认知讲习班上提出的估计挑战的第一站解决办法。 在这项挑战中,我们的目标是从缝合的全景图像中估计人类的构成。我们的方法基于更快的R-CNN(用于人类检测)和HRNet(用于人体构成估计)。我们描述了JRDB-Pose数据集的技术细节以及一些实验结果。在竞赛中,我们在JRDB-Pose测试集上取得了0.303美元(text{OSPA}text{IOU<unk> $)和64.047 $(text{AP{text{0.5}$)。</s>