Generative Adversarial Networks (GANs) are a powerful indirect genotype-to-phenotype mapping for evolutionary search. Much previous work applying GANs to level generation focuses on fixed-size segments combined into a whole level, but individual segments may not fit together cohesively. In contrast, segments in human designed levels are often repeated, directly or with variation, and organized into patterns (the symmetric eagle in Level 1 of The Legend of Zelda, or repeated pipe motifs in Super Mario Bros). Such patterns can be produced with Compositional Pattern Producing Networks (CPPNs). CPPNs define latent vector GAN inputs as a function of geometry, organizing segments output by a GAN into complete levels. However, collections of latent vectors can also be evolved directly, producing more chaotic levels. We propose a hybrid approach that evolves CPPNs first, but allows latent vectors to evolve later, combining the benefits of both approaches. These approaches are evaluated in Super Mario Bros. and The Legend of Zelda. We previously demonstrated via divergent search (MAP-Elites) that CPPNs better cover the space of possible levels than directly evolved levels. Here, we show that the hybrid approach (1) covers areas that neither of the other methods can, and (2) achieves comparable or superior QD scores.


翻译:基因突变网络(GANs)是一个强大的间接间接基因类型到苯型图解,用于进化搜索。以前许多应用GANs到水平生成的工作都侧重于固定尺寸部分,将其组合成整个层次,但个别部分可能不连贯地组合在一起。相比之下,人类设计的层次部分往往重复、直接或有差异,并形成模式(Zelda传说第1级的对称鹰,或Super Mario Bros的重复管道模型)。这些模式可以通过组成模式生成网络(CPPNs)来生成。CPPns将潜在的矢量GAN投入定义为几何功能的函数,将GAN部分输出组织成完整层次。然而,潜在矢量的集合也可以直接演变,产生更多的混乱程度。我们建议一种混合方法,先演化CPPPs,但允许潜伏矢量在以后演化,同时结合这两种方法的好处。这些方法在Supiri Mario Bros和Zelda传说。我们以前通过不同的搜索(MAP-Elites)将潜向的矢量值确定GAN的矢量范围,而不是相互比较的层次,我们所演化的层次上显示我们所演化的MPNPPPPPPN可能达到的层次。

0
下载
关闭预览

相关内容

【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
34+阅读 · 2021年11月30日
专知会员服务
55+阅读 · 2021年7月21日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ICCV17 :12为顶级大牛教你学生成对抗网络(GAN)!
全球人工智能
8+阅读 · 2017年11月26日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
27+阅读 · 2021年11月11日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
5+阅读 · 2018年5月21日
Arxiv
3+阅读 · 2018年4月3日
Arxiv
6+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
34+阅读 · 2021年11月30日
专知会员服务
55+阅读 · 2021年7月21日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ICCV17 :12为顶级大牛教你学生成对抗网络(GAN)!
全球人工智能
8+阅读 · 2017年11月26日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员