Applications of force control and motion planning often rely on an inverse dynamics model to represent the high-dimensional dynamic behavior of robots during motion. The widespread occurrence of low-velocity, small-scale, locally isotropic motion (LIMO) typically complicates the identification of appropriate models due to the exaggeration of dynamic effects and sensory perturbation caused by complex friction and phenomena of hysteresis, e.g., pertaining to joint elasticity. We propose a hybrid model learning base architecture combining a rigid body dynamics model identified by parametric regression and time-series neural network architectures based on multilayer-perceptron, LSTM, and Transformer topologies. Further, we introduce novel joint-wise rotational history encoding, reinforcing temporal information to effectively model dynamic hysteresis. The models are evaluated on a KUKA iiwa 14 during algorithmically generated locally isotropic movements. Together with the rotational encoding, the proposed architectures outperform state-of-the-art baselines by a magnitude of 10$^3$ yielding an RMSE of 0.14 Nm. Leveraging the hybrid structure and time-series encoding capabilities, our approach allows for accurate torque estimation, indicating its applicability in critically force-sensitive applications during motion sequences exceeding the capacity of conventional inverse dynamics models while retaining trainability in face of scarce data and explainability due to the employed physics model prior.


翻译:应用武力控制和运动规划往往依赖反向动态模型,以代表运动期间机器人的高维动态行为。广泛出现的低速、小规模、局部异向运动(LIMO)通常使确定适当模型的工作复杂化,因为复杂的摩擦和歇斯底里现象(例如,与联合弹性有关)造成的动态效应和感官扰动现象夸大了,例如,与联合弹性有关的复合摩擦和歇斯底里现象造成的动态效应和感官扰动。我们提议了一个混合示范学习基础架构,结合一个由参数回归和时序神经网络结构所查明的僵硬身体动态模型,该模型以多层-视线、LSTM和变异式结构为基础的硬体动态模型。此外,我们引入了新的联合-明智的轮换历史编码,强化了时间信息,以有效模拟常规的动态歇斯底线(LIMO II 14) 。模型在本地自算运动运动运动运动运动运动运动运动运动运动运动期间,与轮换编码一起,拟议结构比目前最先进的保留状态基线高出10美元,在10-3美元的水平上产生一个IMENE的可追溯性、精确的可变的可变式机能模型,同时在前可变动性序列中显示其精确的可变式数据结构,在精确的可变式序列中,在精确性变式序列中显示其精确性结构结构上显示其精确性能应用能力,在精确性结构结构上显示其精确性能在精确性结构上显示其精确性结构的可变能力。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月26日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员