Deep neural networks are highly vulnerable to adversarial examples that inputs with small, carefully crafted perturbations that cause misclassification, making adversarial attacks an essential tool for robustness evaluation. Existing black-box attacks fall into three categories: query-only, transfer-only, and query-and-transfer, and vary in perturbation pattern and optimization strategy. However, no prior method jointly achieves query-and-transfer guidance, pixel-wise sparsity, and training-free direct optimization, leaving a gap between black-box flexibility and white-box precision. We present GreedyPixel, a new attack framework that fills this gap by combining a surrogate-derived pixel priority map with greedy, per-pixel optimization refined by query feedback. This design reduces the exponential brute-force search space to a tractable linear procedure, guarantees monotonic loss decrease and convergence to a coordinate-wise optimum, and concentrates perturbations on robust, semantically meaningful pixels to improve perceptual quality. Extensive experiments on CIFAR-10 and ImageNet under both white-box and black-box settings demonstrate that GreedyPixel achieves state-of-the-art attack success rates and produces visually imperceptible perturbations. Our results show that GreedyPixel bridges the precision gap between white-box and black-box attacks and provides a practical framework for fine-grained robustness evaluation. The implementation is available at https://github.com/azrealwang/greedypixel.
翻译:暂无翻译