We introduce a general differentiable solver for time-dependent deformation problems with contact. Our approach uses a finite element discretization with a high-order time integrator coupled with the recently proposed incremental potential contact method for handling contact and friction forces to solve PDE- and ODE-constrained optimization problems on scenes with a complex geometry. It support static and dynamic problems, it support differentiation with respect to all physical parameters involved in the physical problem description, which include shape, material parameters, friction parameters and initial conditions. Our analytically derived adjoint formulation is efficient, with an overhead of not more than 2 times the forward simulation, and shares many similarities with the forward problem, allowing reusing large parts of the code of an existing forward simulator code. We implement our approach on top of the open-source PolyFEM FE library, and demonstrate the applicability of our solver to shape design, initial condition optimization, and material estimation on both simulated results and in physical validations.
翻译:我们的方法是使用一个有限元素分解,配有高顺序时间集成器,加上最近提出的处理接触和摩擦力量的递增潜在接触方法,以解决复杂几何测量的场景上受PDE和ODE限制的优化问题,它支持静态和动态问题,支持对物理问题描述中涉及的所有物理参数的差别化,其中包括形状、物质参数、摩擦参数和初始条件。我们分析得出的联合配方是有效的,顶部不超过前方模拟的2倍,与前方问题有许多相似之处,允许重用现有前方模拟码的代码的很大一部分。我们在开放源PROFEM FE图书馆之外实施我们的方法,并展示我们的解方对模拟结果和实物验证的设计、初步状况优化和材料估算的实用性。