We consider homomorphisms of signed graphs from a computational perspective. In particular, we study the list homomorphism problem seeking a homomorphism of an input signed graph $(G,\sigma)$, equipped with lists $L(v) \subseteq V(H), v \in V(G)$, of allowed images, to a fixed target signed graph $(H,\pi)$. The complexity of the similar homomorphism problem without lists (corresponding to all lists being $L(v)=V(H)$) has been previously classified by Brewster and Siggers, but the list version remains open and appears difficult. We illustrate this difficulty by classifying the complexity of the problem when $H$ is a tree (with possible loops). The tools we develop will be useful for classifications of other classes of signed graphs, and we mention some follow-up research of this kind; the classifications are surprisingly complex.
翻译:我们从计算的角度来考虑签名图形的同质性。 特别是, 我们研究列表中的同质性问题, 寻求输入签名的图形$( G,\ sigma) 的同质性, 配有允许图像的列表$L( v)\ subseteq V( H), v\ in V( G)$, 配有允许图像的列表, 配有允许图像的列表$L( v)\ subseteq V( H), 配有固定的目标签名的图形$( H,\ pi) 。 类似的同质性问题的复杂性( 对应所有列表为$L( v) = V( H) $), 此前由 Brewster 和 Siggers 进行了分类, 但列表的版本仍然开放且似乎很困难。 我们用当$H 是树时( 可能有循环) 来说明这一问题的复杂性。 我们开发的工具对于其他类型签名的图表的分类有用, 我们提到一些后续研究; 分类是惊人的复杂 。