Frei et al. [6] showed that the problem to decide whether a graph is stable with respect to some graph parameter under adding or removing either edges or vertices is $\Theta_2^{\text{P}}$-complete. They studied the common graph parameters $\alpha$ (independence number), $\beta$ (vertex cover number), $\omega$ (clique number), and $\chi$ (chromatic number) for certain variants of the stability problem. We follow their approach and provide a large number of polynomial-time algorithms solving these problems for special graph classes, namely for graphs without edges, complete graphs, paths, trees, forests, bipartite graphs, and co-graphs.
翻译:Frei et al. [6] 显示,在添加或删除边缘或脊椎下,要确定一个图表对于某些图形参数是否稳定,问题在于$\Theta_2 ⁇ text{P ⁇ $-complete。他们研究了通用图形参数$\alpha$(独立号)、$\beta$(垂直覆盖号)、$\omega$(类别号)和$\chi$(色数),以了解稳定性问题的某些变量。我们遵循了它们的方法,为特殊图表类别,即无边缘图、完整图表、路径图、树、森林图、双片图和共同图表,提供了大量多数值算方法解决这些问题。