Confidence sequences are sequences of confidence sets that adapt to incoming data while maintaining validity. Recent advances have introduced an algorithmic formulation for constructing some of the tightest confidence sequences for bounded real random variables. These approaches use a coin-betting framework, where a player sequentially bets on differences between potential mean values and observed data. This letter establishes that such coin-betting formulation is optimal among all possible algorithmic frameworks for constructing confidence sequences that build on e-variables and sequential hypothesis testing.
翻译:暂无翻译