Complex nonlinear interplays of multiple scales give rise to many interesting physical phenomena and pose major difficulties for the computer simulation of multiscale PDE models in areas such as reservoir simulation, high frequency scattering and turbulence modeling. In this paper, we introduce a hierarchical transformer (HT) scheme to efficiently learn the solution operator for multiscale PDEs. We construct a hierarchical architecture with scale adaptive interaction range, such that the features can be computed in a nested manner and with a controllable linear cost. Self-attentions over a hierarchy of levels can be used to encode and decode the multiscale solution space over all scale ranges. In addition, we adopt an empirical $H^1$ loss function to counteract the spectral bias of the neural network approximation for multiscale functions. In the numerical experiments, we demonstrate the superior performance of the HT scheme compared with state-of-the-art (SOTA) methods for representative multiscale problems.
翻译:多尺度的复杂非线性相互作用产生了许多有趣的物理现象,对储油层模拟、高频散射和动荡建模等领域多尺度PDE模型的计算机模拟造成了重大困难。在本文件中,我们引入了一个等级变压器(HT)计划,以有效学习多尺度PDE的解决方案操作者。我们构建了一个等级结构,其规模具有适应性互动范围,从而可以以嵌套方式和可控制线性成本来计算特征。可以使用对层次等级的自控来编码和解码所有尺度范围内的多尺度解决方案空间。此外,我们采用了一个经验性的$H$1$损失功能,以抵消多尺度功能神经网络近距离的光谱偏差。在数字实验中,我们展示了与具有代表性的多尺度问题的最新(SOTA)方法相比,HT计划的优异性表现。