A deluge of new data on social, technological and biological networked systems suggests that a large number of interactions among system units are not limited to pairs, but rather involve a higher number of nodes. To properly encode such higher-order interactions, richer mathematical frameworks such as hypergraphs are needed, where hyperlinks describe connections among an arbitrary number of nodes. Here we introduce the concept of higher-order motifs, small connected subgraphs where vertices may be linked by interactions of any order. We provide lower and upper bounds on the number of higher-order motifs as a function of the motif size, and propose an efficient algorithm to extract complete higher-order motif profiles from empirical data. We identify different families of hypergraphs, characterized by distinct higher-order connectivity patterns at the local scale. We also capture evidences of structural reinforcement, a mechanism that associates higher strengths of higher-order interactions for the nodes that interact more at the pairwise level. Our work highlights the informative power of higher-order motifs, providing a first way to extract higher-order fingerprints in hypergraphs at the network microscale.
翻译:有关社会、技术和生物网络系统的新数据庞大,表明系统单元之间大量互动并不限于对等,而是涉及更多的节点。为适当编码这种更高层次的相互作用,需要更丰富的数学框架,如超文本谱,其中超链接描述任意数目的节点之间的联系。这里我们引入了较高层次的motifs概念,小型连接子集子集,其中任何顺序的相互作用可以将高层次的顶点连接起来。我们提供较高层次的软点数目的下限和上限,作为移动大小的函数,并提出一种高效的算法,以便从经验数据中提取完整的更高层次的移动图谱。我们找出高层次的不同家族,其特征是地方尺度上不同的更高层次的连接模式。我们还收集了结构强化的证据,这种机制将较高层次相互作用的较高层次与在对等层次上相互作用较多的节点联系起来。我们的工作突出了更高层次的软点的信息性能,提供了在网络微尺度上提取更高层次高层次高层次的指纹的第一个方法。