This paper demonstrates that the space of piecewise smooth functions can be well approximated by the space of functions defined by a set of simple (non-linear) operations on smooth uniform splines. The examples include bivariate functions with jump discontinuities or normal discontinuities across curves, and even across more involved geometries such as a 3-corner. The given data may be uniform or non-uniform, and noisy, and the approximation procedure involves non-linear least-squares minimization. Also included is a basic approximation theorem for functions with jump discontinuity across a smooth curve.
翻译:暂无翻译