The fair $k$-median problem is one of the important clustering problems. The current best approximation ratio is 4.675 for this problem with 1-fair violation, which was proposed by Bercea et al. [APPROX-RANDOM'2019]. As far as we know, there is no available approximation algorithm for the problem without any fair violation. In this paper, we consider the fair $k$-median problem in bounded doubling metrics and general metrics. We provide the first QPTAS for fair $k$-median problem in doubling metrics. Based on the split-tree decomposition of doubling metrics, we present a dynamic programming process to find the candidate centers, and apply min-cost max-flow method to deal with the assignment of clients. Especially, for overcoming the difficulties caused by the fair constraints, we construct an auxiliary graph and use minimum weighted perfect matching to get part of the cost. For the fair $k$-median problem in general metrics, we present an approximation algorithm with ratio $O(\log k)$, which is based on the embedding of given space into tree metrics, and the dynamic programming method. Our two approximation algorithms for the fair $k$-median problem are the first results for the corresponding problems without any fair violation, respectively.
翻译:公平美元中间值问题是一个重要的组群问题之一。目前的最佳近似比率是4.675,这是Bercea等人[APROX-RANDOM'2019]提议的,这个问题与1公平违规问题有关,目前的最佳近似比率是4.675。据我们所知,在没有任何公平违规的情况下,没有现成的近似算法来解决这个问题。在本文中,我们认为,在捆绑的双倍指标和通用指标中,公平美元中间值是公平的中值问题。在双倍指标中,我们为公平的美元中间值问题提供了第一个QPTAS。根据双倍指标的分树分层分解,我们提出了一个动态的编程程序程序程序程序程序,以寻找候选中心,并运用微成本最大流法处理客户的指派问题。特别是为了克服公平制约造成的困难,我们制作了一个辅助图表,用最小的加权完美匹配法来支付部分费用。对于一般指标中公平美元中间值问题,我们提出了一种以美元中间值为单位的近似值算法。基于将特定空间分别嵌入公平汇率的基数、任何动态矩阵问题,而使我们的两种平时,我们的第一方法用于公平平基压。