The use of autoencoders for shape editing or generation through latent space manipulation suffers from unpredictable changes in the output shape. Our autoencoder-based method enables intuitive shape editing in latent space by disentangling latent sub-spaces into style variables and control points on the surface that can be manipulated independently. The key idea is adding a Lipschitz-type constraint to the loss function, i.e. bounding the change of the output shape proportionally to the change in latent space, leading to interpretable latent space representations. The control points on the surface that are part of the latent code of an object can then be freely moved, allowing for intuitive shape editing directly in latent space. We evaluate our method by comparing to state-of-the-art data-driven shape editing methods. We further demonstrate the expressiveness of our learned latent space by leveraging it for unsupervised part segmentation.
翻译:通过潜伏空间操纵使用自动编码器进行形状编辑或生成,其结果形状变化无法预测。我们以自动编码器为基础的方法通过将潜伏子空间分离成可独立操作的样式变量和表面控制点,可以在潜伏空间进行直观形状编辑。关键的想法是给损失功能添加一个 Lipschitz 型限制,即将输出形状的变化与潜伏空间的变化成正比,导致可解释的潜伏空间显示。作为一个物体潜伏代码一部分的表面控制点可以自由移动,从而允许在潜伏空间直接进行直观形状编辑。我们通过比较最先进的数据驱动形状编辑方法来评估我们的方法。我们进一步通过将它用于不受监督的部分分割来显示我们所学过的潜在空间的表达性。