In this work, we investigate the inverse problem of determining the kernel functions that best describe the mechanical behavior of a complex medium modeled by a general nonlocal viscoelastic wave equation. To this end, we minimize a tracking-type data misfit function under this PDE constraint. We perform the well-posedness analysis of the state and adjoint problems and, using these results, rigorously derive the first-order sensitivities. Numerical experiments in a three-dimensional setting illustrate the method.
翻译:在这项工作中,我们调查了确定内核函数的反向问题,这种内核函数最能描述以一般非本地粘结波等方程式为模型的复杂介质的机械行为。 为此,我们尽量减少PDE限制下的一种跟踪型数据错误功能。我们对状态和关联问题进行稳妥的状态分析,并利用这些结果,严格地得出第一级敏感度。三维环境中的数值实验说明了方法。