Matroid intersection is one of the most powerful frameworks of matroid theory that generalizes various problems in combinatorial optimization. Edmonds' fundamental theorem provides a min-max characterization for the unweighted setting, while Frank's weight-splitting theorem provides one for the weighted case. Several efficient algorithms were developed for these problems, all relying on the usage of one of the conventional oracles for both matroids. In the present paper, we consider the tractability of the matroid intersection problem under restricted oracles. In particular, we focus on the rank sum, common independence, and maximum rank oracles. We give a strongly polynomial-time algorithm for weighted matroid intersection under the rank sum oracle. In the common independence oracle model, we prove that the unweighted matroid intersection problem is tractable when one of the matroids is a partition matroid, and that even the weighted case is solvable when one of the matroids is an elementary split matroid. Finally, we show that the common independence and maximum rank oracles together are strong enough to realize the steps of our algorithm under the rank sum oracle.


翻译:马甲状腺十字路口是概括组合优化中各种问题的最强大的超自然理论框架之一。 Edmonds的基本理论为未加权环境提供了一个微量轴特性, 而Frank的权重分割理论则为加权情况提供了一种。 为这些问题开发了几种高效的算法, 所有这些都依赖于对两种类固醇使用一种常规神器。 在本文中, 我们考虑在限制的神器下, 类固醇交叉问题具有可移植性。 特别是, 我们关注等级和普通独立, 以及最高等级。 我们为等级和神器下的加权人造体交叉点给出了强烈的多重时间算法。 在普通的独立或神器模型中, 我们证明当一个类固醇是配方的甲状腺时, 非加权的机体交叉点问题是可以移动的, 而当一个类固醇是基本分裂的甲状腺时, 即便是加权的病例也是可以溶解的。 最后, 我们表明, 共同的独立和最高等级或最高等级在等级之下,我们共同的等级或最高等级之下都足够强大。

0
下载
关闭预览

相关内容

甲骨文公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989年正式进入中国市场。2013年,甲骨文已超越 IBM ,成为继 Microsoft 后全球第二大软件公司。
【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
0+阅读 · 2023年3月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员