In this paper, we present a conceptually simple, strong, and efficient framework for panoptic segmentation, called Panoptic FCN. Our approach aims to represent and predict foreground things and background stuff in a unified fully convolutional pipeline. In particular, Panoptic FCN encodes each object instance or stuff category into a specific kernel weight with the proposed kernel generator and produces the prediction by convolving the high-resolution feature directly. With this approach, instance-aware and semantically consistent properties for things and stuff can be respectively satisfied in a simple generate-kernel-then-segment workflow. Without extra boxes for localization or instance separation, the proposed approach outperforms previous box-based and -free models with high efficiency on COCO, Cityscapes, and Mapillary Vistas datasets with single scale input. Our code is made publicly available at https://github.com/yanwei-li/PanopticFCN.
翻译:在本文中,我们提出了一个简单、有力、高效的全光分层概念框架,称为Panoptic FCN。我们的方法旨在代表并预测地表事物和背景材料,在统一的全进化管道中代表并预测前景事物和背景材料。特别是,泛光FCN将每个物体实例或物质类别编码成一个特定的内核重量,与拟议的内核生成器相连接,并通过直接涉及高分辨率特征来作出预测。通过这种方法,对事物和物质的体能和语义一致性特性可以分别在一个简单的生成内核分层工作流程中得到满足。如果没有额外的本地化或立体分离箱,拟议的方法将比以前在COCO、城市景景和Mapully Vistas数据集上高效且具有单一规模投入的箱式和无框式模型形成。我们的代码可在https://github.com/yanwei-li/PanpopicFCN上公开查阅。我们的代码可在https://github.com/yanwei-li/PanpotFCN上查阅。