Join operations (especially n-way, many-to-many joins) are known to be time- and resource-consuming. At large scales, with respect to table and join-result sizes, current state of the art approaches (including both binary-join plans which use Nested-loop/Hash/Sort-merge Join algorithms or, alternatively, worst-case optimal join algorithms (WOJAs)), may even fail to produce any answer given reasonable resource and time constraints. In this work, we introduce a new approach for n-way equi-join processing, the Graphical Join (GJ). The key idea is two-fold: First, to map the physical join computation problem to PGMs and introduce tweaked inference algorithms which can compute a Run-Length Encoding (RLE) based join-result summary, entailing all statistics necessary to materialize the join result. Second, and most importantly, to show that a join algorithm, like GJ, which produces the above join-result summary and then desummarizes it, can introduce large performance benefits in time and space. Comprehensive experimentation is undertaken with join queries from the JOB, TPCDS, and lastFM datasets, comparing GJ against PostgresQL and MonetDB and a state of the art WOJA implemented within the Umbra system. The results for in-memory join computation show performance improvements up to 64X, 388X, and 6X faster than PostgreSQL, MonetDB and Umbra, respectively. For on-disk join computation, GJ is faster than PostgreSQL, MonetDB and Umbra by up to 820X, 717X and 165X, respectively. Furthermore, GJ space needs are up to 21,488X, 38,333X, and 78,750X smaller than PostgresQL, MonetDB, and Umbra, respectively.
翻译:合并操作( 特别是正向, 许多到多个的合并) 已知的合并操作( 特别是正向, 许多到很多的合并) 可能甚至无法产生任何答案 合理的资源和时间限制 。 在这项工作中, 我们为正经equi- join 处理、 图形化联合( GJ) 引入了一种新的方法 。 在大比例上, 关于表格和组合结果大小, 最新的方法( 包括使用 Nested- loop/ Hash/ Sort- 合并合并的二进join 计划, 包括使用 Nested- loop/ Hash/ Sort- 合并的合并算法, 或者, 最坏的情况33 最佳合并算法( WOJAs) 可能甚至无法产生任何答案 。 7X 20 资源 和时间限制 。 在这项工作中, 我们引入了 e- equal- join join 、 图形化( GJJJ) 和 GMDO- Ral 内部的自动测试, 和 G- Restal- Restal- Rex 数据 分别显示了 和 GR- Rex- Rex- Rex- 和 GVAx- Rest- Rex- 的性能 和 GR- Rex- Rex- Rex- Rex- 21 和 G.