Join operations (especially n-way, many-to-many joins) are known to be time- and resource-consuming. At large scales, with respect to table and join-result sizes, current state of the art approaches (including both binary-join plans which use Nested-loop/Hash/Sort-merge Join algorithms or, alternatively, worst-case optimal join algorithms (WOJAs)), may even fail to produce any answer given reasonable resource and time constraints. In this work, we introduce a new approach for n-way equi-join processing, the Graphical Join (GJ). The key idea is two-fold: First, to map the physical join computation problem to PGMs and introduce tweaked inference algorithms which can compute a Run-Length Encoding (RLE) based join-result summary, entailing all statistics necessary to materialize the join result. Second, and most importantly, to show that a join algorithm, like GJ, which produces the above join-result summary and then desummarizes it, can introduce large performance benefits in time and space. Comprehensive experimentation is undertaken with join queries from the JOB, TPCDS, and lastFM datasets, comparing GJ against PostgresQL and MonetDB and a state of the art WOJA implemented within the Umbra system. The results for in-memory join computation show performance improvements up to 64X, 388X, and 6X faster than PostgreSQL, MonetDB and Umbra, respectively. For on-disk join computation, GJ is faster than PostgreSQL, MonetDB and Umbra by up to 820X, 717X and 165X, respectively. Furthermore, GJ space needs are up to 21,488X, 38,333X, and 78,750X smaller than PostgresQL, MonetDB, and Umbra, respectively.


翻译:合并操作( 特别是正向, 许多到多个的合并) 已知的合并操作( 特别是正向, 许多到很多的合并) 可能甚至无法产生任何答案 合理的资源和时间限制 。 在这项工作中, 我们为正经equi- join 处理、 图形化联合( GJ) 引入了一种新的方法 。 在大比例上, 关于表格和组合结果大小, 最新的方法( 包括使用 Nested- loop/ Hash/ Sort- 合并合并的二进join 计划, 包括使用 Nested- loop/ Hash/ Sort- 合并的合并算法, 或者, 最坏的情况33 最佳合并算法( WOJAs) 可能甚至无法产生任何答案 。 7X 20 资源 和时间限制 。 在这项工作中, 我们引入了 e- equal- join join 、 图形化( GJJJ) 和 GMDO- Ral 内部的自动测试, 和 G- Restal- Restal- Rex 数据 分别显示了 和 GR- Rex- Rex- Rex- 和 GVAx- Rest- Rex- 的性能 和 GR- Rex- Rex- Rex- Rex- 21 和 G.

0
下载
关闭预览

相关内容

PostgreSQL 是自由的对象-关系数据库服务器(数据库管理系统),在灵活的 BSD 风格许可证下发行。
专知会员服务
39+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年8月5日
Arxiv
0+阅读 · 2022年8月5日
Arxiv
20+阅读 · 2021年9月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员