While researches on model-based blind single image super-resolution (SISR) have achieved tremendous successes recently, most of them do not consider the image degradation sufficiently. Firstly, they always assume image noise obeys an independent and identically distributed (i.i.d.) Gaussian or Laplacian distribution, which largely underestimates the complexity of real noise. Secondly, previous commonly-used kernel priors (e.g., normalization, sparsity) are not effective enough to guarantee a rational kernel solution, and thus degenerates the performance of subsequent SISR task. To address the above issues, this paper proposes a model-based blind SISR method under the probabilistic framework, which elaborately models image degradation from the perspectives of noise and blur kernel. Specifically, instead of the traditional i.i.d. noise assumption, a patch-based non-i.i.d. noise model is proposed to tackle the complicated real noise, expecting to increase the degrees of freedom of the model for noise representation. As for the blur kernel, we novelly construct a concise yet effective kernel generator, and plug it into the proposed blind SISR method as an explicit kernel prior (EKP). To solve the proposed model, a theoretically grounded Monte Carlo EM algorithm is specifically designed. Comprehensive experiments demonstrate the superiority of our method over current state-of-the-arts on synthetic and real datasets.
翻译:虽然对基于模型的盲盲单一图像超分辨率(SISR)的研究最近取得了巨大成功,但其中多数人并不认为图像退化足够充分。首先,他们总是假设图像噪音符合独立和同样分布的(即d)高山或拉普拉西亚分布,这在很大程度上低估了真实噪音的复杂性。其次,以往常用的内核前置(例如正常化、聚度)不够有效,无法保证合理的内核解决方案,从而削弱了随后的SISSR任务。为了解决上述问题,本文件提议在概率框架下采用基于模型的盲人SISSR方法,从噪音和模糊内核的角度详细模拟图像退化。具体地说,而不是传统的i.d.噪音假设,即基于补丁的非i.d.噪音模型,是为了解决复杂的真实噪音,期望提高噪音代表模型的自由度。关于模糊内核,我们新设计的简明而有效的合成内核系统智能的合成系统系统系统模型,将一个成熟的模型插入了拟议的智能的SIM-IS-IS-S-IS-S-S-IS-S-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-S-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-S-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I