This paper proposes a 1D residual convolutional neural network (CNN) architecture for music genre classification and compares it with other recent 1D CNN architectures. The 1D CNNs learn a representation and a discriminant directly from the raw audio signal. Several convolutional layers capture the time-frequency characteristics of the audio signal and learn various filters relevant to the music genre recognition task. The proposed approach splits the audio signal into overlapped segments using a sliding window to comply with the fixed-length input constraint of the 1D CNNs. As a result, music genre classification can be carried out on a single audio segment or on the aggregation of the predictions on several audio segments, which improves the final accuracy. The performance of the proposed 1D residual CNN is assessed on a public dataset of 1,000 audio clips. The experimental results have shown that it achieves 80.93% of mean accuracy in classifying music genres and outperforms other 1D CNN architectures.


翻译:本文建议了 1D 剩余神经神经网络(CNN) 结构,用于音乐基因分类,并将其与其他最近的1D CNN 结构进行比较。 1D CNN 结构直接从原始音频信号中学习一个表达和截面。 多个相继层捕获音频信号的时间频率特性,并学习与音乐基因识别任务相关的各种过滤器。 提议的方法将音频信号分割为重叠部分,使用滑动窗口满足1D CNN 的固定长度输入限制。 因此,音乐基因分类可以在单一音频段或若干音频段预测汇总上进行,以提高最终准确性。 拟议的1D CNN 功能在1,000个音频剪的公开数据集上进行评估。 实验结果表明,它在音乐基因分类中实现了80.93%的平均准确度,并超越了其他 1D CNN 结构。

0
下载
关闭预览

相关内容

在深度学习中,卷积神经网络(CNN或ConvNet)是一类深度神经网络,最常用于分析视觉图像。基于它们的共享权重架构和平移不变性特征,它们也被称为位移不变或空间不变的人工神经网络(SIANN)。它们在图像和视频识别,推荐系统,图像分类,医学图像分析,自然语言处理,和财务时间序列中都有应用。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
35+阅读 · 2020年4月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
8+阅读 · 2021年1月28日
Arxiv
6+阅读 · 2020年10月8日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
VIP会员
相关资讯
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员