We demonstrate transfer learning-assisted neural network models for optical matrix multipliers with scarce measurement data. Our approach uses <10\% of experimental data needed for best performance and outperforms analytical models for a Mach-Zehnder interferometer mesh.
翻译:我们用稀缺的测量数据展示光学矩阵乘数的转移学习辅助神经网络模型,我们的方法是使用最佳性能所需的实验数据<10 ⁇,并优于Mach-Zehnder干涉仪网格的分析模型。