We present an algorithm to learn the relevant latent variables of a large-scale discretized physical system and predict its time evolution using thermodynamically-consistent deep neural networks. Our method relies on sparse autoencoders, which reduce the dimensionality of the full order model to a set of sparse latent variables with no prior knowledge of the coded space dimensionality. Then, a second neural network is trained to learn the metriplectic structure of those reduced physical variables and predict its time evolution with a so-called structure-preserving neural network. This data-based integrator is guaranteed to conserve the total energy of the system and the entropy inequality, and can be applied to both conservative and dissipative systems. The integrated paths can then be decoded to the original full-dimensional manifold and be compared to the ground truth solution. This method is tested with two examples applied to fluid and solid mechanics.
翻译:我们提出一种算法,以学习大规模离散物理系统的相关潜在变量,并使用热动力兼容的深神经网络预测其时间演变情况。我们的方法依靠稀疏的自动代数器,将全顺序模型的维度降低为一组原始的稀疏潜在变量,而事先对编码空间维度并不了解。然后,第二个神经网络接受培训,以学习这些减少的物理变量的代位结构,并用一个所谓的结构保护神经网络预测其时间演变情况。这个基于数据的整合器可以保证保护系统的总能量和酶的不平等,并且可以适用于保守和消散的系统。然后,集成路径可以与原始的全维方位元解码,并与地面的真理解决方案进行比较。这个方法用适用于流力和固力机械的两个实例进行测试。