This review deals with Restricted Boltzmann Machine (RBM) under the light of statistical physics. The RBM is a classical family of Machine learning (ML) models which played a central role in the development of deep learning. Viewing it as a Spin Glass model and exhibiting various links with other models of statistical physics, we gather recent results dealing with mean-field theory in this context. First the functioning of the RBM can be analyzed via the phase diagrams obtained for various statistical ensembles of RBM leading in particular to identify a {\it compositional phase} where a small number of features or modes are combined to form complex patterns. Then we discuss recent works either able to devise mean-field based learning algorithms; either able to reproduce generic aspects of the learning process from some {\it ensemble dynamics equations} or/and from linear stability arguments.
翻译:本审查涉及在统计物理学的光照下受限制的波尔兹曼机器(RBM)。成果管理制是一个典型的机器学习模式,在深层次学习的发展中起着核心作用。我们把它看成一个圆玻璃模型,并展示与其他统计物理学模型的各种联系。在这方面,我们收集了涉及平均场理论的最新结果。首先,可以通过为各种成果管理制统计组合而获得的阶段图分析成果管理制的运作情况,这特别导致确定一个 ~it 构成阶段},在这一阶段,少数特征或模式被组合成复杂的模式。然后,我们讨论最近的工程,要么能够设计以平均场为基础的学习算法;要么能够从一些串联动态方程式中复制学习过程的通用方面, 要么能够从一些位元动态方程公式中复制学习过程的通用方面, 要么可以从线性稳定性参数中复制。