Canonical quantum correlation observables can be approximated by classical molecular dynamics. In the case of low temperature the ab initio molecular dynamics potential energy is based on the ground state electron eigenvalue problem and the accuracy has been proven to be $\mathcal O(M^{-1})$, provided the first electron eigenvalue gap is sufficiently large compared to the given temperature and $M$ is the ratio of nuclei and electron masses. For higher temperature eigenvalues corresponding to excited electron states are required to obtain $\mathcal O(M^{-1})$ accuracy and the derivations assume that all electron eigenvalues are separated, which for instance excludes conical intersections. This work studies a mean-field molecular dynamics approximation where the mean-field Hamiltonian for the nuclei is the partial trace $h:={\rm Tr}(H e^{-\beta H})/{\rm Tr}(e^{-\beta H})$ with respect to the electron degrees of freedom and $H$ is the Weyl symbol corresponding to a quantum many body Hamiltonian $\widehat{H}$. It is proved that the mean-field molecular dynamics approximates canonical quantum correlation observables with accuracy $\mathcal O (M^{-1}+ t\epsilon^2)$, for correlation time $t$ where $\epsilon^2$ is related to the variance of mean value approximation $h$. Furthermore, the proof derives a precise asymptotic representation of the Weyl symbol of the Gibbs density operator using a path integral formulation. Numerical experiments on a model problem with one nuclei and two electron states show that the mean-field dynamics has similar or better accuracy than standard molecular dynamics based on the ground state electron eigenvalue.
翻译:古典分子动态可以近似于古典分子量关系观测。在低温的情况下, 初始分子动态潜在能量以地面电离电离值问题为基础, 准确度被证明为$\mathcal O( M ⁇ -1})$, 但前提是, 与给定温度相比, 首次电离离值值差异足够大, $M$是核和电子质量的比例。 对于与兴奋电子状态相对应的较高温度双倍值而言, 需要获得 $mathcal O( M ⁇ -1}) 美元 的精确度, 并假定所有电子亚离子值都分开, 举例来说, 不包括锥体交点交叉点。 这项工作研究一种平均的分子动态, 平均场的汉密尔密尔顿值与给定值的一元和电离子值之比。 以正值的正值值值为 美元正值, 以正值的正值向量基值表示, 以正值的正值为正值 m; 以正数值为正值的硬值 malmlalmal=lal 。