Skin cancer is one of the most prevalent forms of human cancer. It is recognized mainly visually, beginning with clinical screening and continuing with the dermoscopic examination, histological assessment, and specimen collection. Deep convolutional neural networks (CNNs) perform highly segregated and potentially universal tasks against a classified finegrained object. This research proposes a novel multi-class prediction framework that classifies skin lesions based on ViT and ViTGAN. Vision transformers-based GANs (Generative Adversarial Networks) are utilized to tackle the class imbalance. The framework consists of four main phases: ViTGANs, Image processing, and explainable AI. Phase 1 consists of generating synthetic images to balance all the classes in the dataset. Phase 2 consists of applying different data augmentation techniques and morphological operations to increase the size of the data. Phases 3 & 4 involve developing a ViT model for edge computing systems that can identify patterns and categorize skin lesions from the user's skin visible in the image. In phase 3, after classifying the lesions into the desired class with ViT, we will use explainable AI (XAI) that leads to more explainable results (using activation maps, etc.) while ensuring high predictive accuracy. Real-time images of skin diseases can capture by a doctor or a patient using the camera of a mobile application to perform an early examination and determine the cause of the skin lesion. The whole framework is compared with the existing frameworks for skin lesion detection.


翻译:皮肤癌是人类癌症最流行的形式之一,主要以视觉为主,从临床筛查开始,继续进行脱温检查、组织学评估和样本收集。深演神经网络(CNNs)对分类细微粒对象执行高度隔离和潜在的普遍性任务。该研究提出了一个新的多级预测框架,根据ViT和ViTGAN对皮肤损伤进行分类。以视觉变压器为基础的GANs(Geneative Aversarial Networks)用来解决阶级失衡问题。框架由四个主要阶段组成:ViTGANs、图像处理和可解释的AI。第一阶段是生成合成图像,以平衡数据集中的所有类别。第二阶段是应用不同的数据增强技术和形态操作,以扩大数据规模。第3和第4阶段是开发一个边缘计算系统的ViT模型,可以识别图中可见的用户皮肤损伤模式,并将现有皮肤损伤分类为可观察的。第3阶段,在用ViT类、图像处理和可解释的皮肤检测结果后,我们将用真实的图像来解释,然后用直测测测,然后用可测测测。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2022年1月26日
A Survey on Data Augmentation for Text Classification
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员