Domain randomisation is a very popular method for visual sim-to-real transfer in robotics, due to its simplicity and ability to achieve transfer without any real-world images at all. Nonetheless, a number of design choices must be made to achieve optimal transfer. In this paper, we perform a comprehensive benchmarking study on these different choices, with two key experiments evaluated on a real-world object pose estimation task. First, we study the rendering quality, and find that a small number of high-quality images is superior to a large number of low-quality images. Second, we study the type of randomisation, and find that both distractors and textures are important for generalisation to novel environments.


翻译:域随机化是一种非常流行的机器人视觉模拟到真实传输的方法,因为其简单易行,而且完全能够实现无真实世界图像的传输。然而,为了实现最佳的传输,必须做出一些设计选择。在本文件中,我们对这些不同选择进行了全面的基准研究,对现实世界对象的两个关键实验进行了评估,从而构成了估算任务。首先,我们研究成品质量,发现少量高质量图像优于大量低质量图像。第二,我们研究随机化的类型,发现分散和质地对于新环境的普及很重要。

0
下载
关闭预览

相关内容

专知会员服务
73+阅读 · 2021年5月28日
【机器推理可解释性】Machine Reasoning Explainability
专知会员服务
34+阅读 · 2020年9月3日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
已删除
将门创投
7+阅读 · 2019年10月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Arxiv
7+阅读 · 2017年12月28日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2019年10月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员