Domain randomisation is a very popular method for visual sim-to-real transfer in robotics, due to its simplicity and ability to achieve transfer without any real-world images at all. Nonetheless, a number of design choices must be made to achieve optimal transfer. In this paper, we perform a comprehensive benchmarking study on these different choices, with two key experiments evaluated on a real-world object pose estimation task. First, we study the rendering quality, and find that a small number of high-quality images is superior to a large number of low-quality images. Second, we study the type of randomisation, and find that both distractors and textures are important for generalisation to novel environments.
翻译:域随机化是一种非常流行的机器人视觉模拟到真实传输的方法,因为其简单易行,而且完全能够实现无真实世界图像的传输。然而,为了实现最佳的传输,必须做出一些设计选择。在本文件中,我们对这些不同选择进行了全面的基准研究,对现实世界对象的两个关键实验进行了评估,从而构成了估算任务。首先,我们研究成品质量,发现少量高质量图像优于大量低质量图像。第二,我们研究随机化的类型,发现分散和质地对于新环境的普及很重要。