Molecular property prediction plays a fundamental role in drug discovery to identify candidate molecules with target properties. However, molecular property prediction is essentially a few-shot problem which makes it hard to use regular machine learning models. In this paper, we propose a Property-Aware Relation networks (PAR) to handle this problem. In comparison to existing works, we leverage the fact that both relevant substructures and relationships among molecules change across different molecular properties. We first introduce a property-aware embedding function to transform the generic molecular embeddings to substructure-aware space relevant to the target property. Further, we design an adaptive relation graph learning module to jointly estimate molecular relation graph and refine molecular embeddings w.r.t. the target property, such that the limited labels can be effectively propagated among similar molecules. We adopt a meta-learning strategy where the parameters are selectively updated within tasks in order to model generic and property-aware knowledge separately. Extensive experiments on benchmark molecular property prediction datasets show that PAR consistently outperforms existing methods and can obtain property-aware molecular embeddings and model molecular relation graph properly.
翻译:分子属性预测在药物发现以辨别具有目标特性的候选分子方面起着根本作用。 然而,分子属性预测基本上是一个小问题,因此很难使用常规机器学习模型。 在本文中,我们提议建立一个财产-软件关系网络(PAR)来处理这一问题。与现有的工程相比,我们利用以下事实:不同分子特性的分子间相关的子结构和关系都发生变化。我们首先引入了一种财产认知嵌入功能,将普通分子嵌入转化为与目标属性相关的结构-意识下空间。此外,我们设计了一个适应性关系图学习模块,以共同估计分子关系图和精细化分子嵌入模型。这样,有限的标签就可以在类似分子间有效传播。我们采用了一种元学习战略,在任务范围内有选择地更新参数,以便分别模拟通用知识和财产意识知识。关于基准分子属性预测数据集的广泛实验显示,PAR一贯地超越现有方法,并能够正确获得财产-认识分子嵌入和模型分子关系图。