Large-scale knowledge graphs (KGs) provide structured representations of human knowledge. However, as it is impossible to contain all knowledge, KGs are usually incomplete. Reasoning based on existing facts paves a way to discover missing facts. In this paper, we study the problem of learning logic rules for reasoning on knowledge graphs for completing missing factual triplets. Learning logic rules equips a model with strong interpretability as well as the ability to generalize to similar tasks. We propose a model called MPLR that improves the existing models to fully use training data and multi-target scenarios are considered. In addition, considering the deficiency in evaluating the performance of models and the quality of mined rules, we further propose two novel indicators to help with the problem. Experimental results empirically demonstrate that our MPLR model outperforms state-of-the-art methods on five benchmark datasets. The results also prove the effectiveness of the indicators.


翻译:大型知识图表(KGs)提供了人类知识的结构化表达方式。然而,由于不可能包含所有知识,KGs通常是不完整的。基于现有事实的根据为发现缺失的事实铺平了一条路。在本文中,我们研究了学习关于知识图表推理的逻辑规则以完成缺失的事实三重图的问题。学习逻辑规则为模型提供了强有力的解释性以及推广类似任务的能力。我们提出了一个称为MPLR的模式,改进现有模型,以充分利用培训数据和多目标设想方案。此外,考虑到在评价模型性能和布雷规则质量方面存在的缺陷,我们进一步提出了两个新的指标来帮助解决问题。实验结果从经验上表明,我们的MPLR模型在五个基准数据集上超越了最新的方法。结果也证明了指标的有效性。

1
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
9+阅读 · 2021年4月21日
Arxiv
7+阅读 · 2019年6月20日
Logic Rules Powered Knowledge Graph Embedding
Arxiv
7+阅读 · 2019年3月9日
Arxiv
3+阅读 · 2018年8月27日
VIP会员
相关资讯
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员