As an alternative to entanglement entropies, the capacity of entanglement becomes a promising candidate to probe and estimate the degree of entanglement of quantum bipartite systems. In this work, we study the typical behavior of entanglement capacity over major models of random states. In particular, the exact and asymptotic formulas of average capacity have been derived under the Hilbert-Schmidt and Bures-Hall ensembles. The obtained formulas generalize some partial results of average capacity computed recently in the literature. As a key ingredient in deriving the results, we make use of recent advances in random matrix theory pertaining to the underlying orthogonal polynomials and special functions. Numerical study has been performed to illustrate the usefulness of average capacity as an entanglement indicator.
翻译:作为缠绕性物种的替代物,缠绕能力成为探究和估计量子双边系统缠绕程度的有希望的候选物。在这项工作中,我们研究了随机状态主要模型的缠绕能力典型行为。特别是,根据Hilbert-Schmidt 和Bures-Hall 组合,得出了平均容量的精确和无症状公式。获得的公式概括了文献最近计算的平均容量的某些部分结果。作为得出结果的一个关键要素,我们利用了与根本的正方形多元体和特殊功能有关的随机矩阵理论的最新进展。进行了数值研究,以说明作为缠绕性指标的平均容量是否有用。