We present substantially generalized and improved quantum algorithms over prior work for inhomogeneous linear and nonlinear ordinary differential equations (ODE). In Berry et al., (2017), a quantum algorithm for a certain class of linear ODEs is given, where the matrix involved needs to be diagonalizable. The quantum algorithm for linear ODEs presented here extends to many classes of non-diagonalizable matrices. The algorithm here is also exponentially faster than the bounds derived in Berry et al., (2017) for certain classes of diagonalizable matrices. Our linear ODE algorithm is then applied to nonlinear differential equations using Carleman linearization (an approach taken recently by us in Liu et al., (2021)). The improvement over that result is two-fold. First, we obtain an exponentially better dependence on error. This kind of logarithmic dependence on error has also been achieved by Xue et al., (2021), but only for homogeneous nonlinear equations. Second, the present algorithm can handle any sparse, invertible matrix (that models dissipation) if it has a negative log-norm (including non-diagonalizable matrices), whereas Liu et al., (2021) and Xue et al., (2021) additionally require normality.
翻译:在Berry 等人(2017年) 中,给出了某类线性分子数的量子算法,其中所涉及的矩阵需要对等化。此处介绍的线性分子数的量子算法扩大到许多非对等化矩阵类别。这里的算法也比Berry 等人(2017年) 对某些类别的可对等化矩阵的界限指数化得更快。然后,我们的线性分子数算法应用到使用Carleman线性化的非线性差异方程式(我们最近在Liu 等人(2021年)采取的一种方法) 。这一结果的改进是双重的。首先,我们对误差的高度依赖性更高。这种对误差的对数依赖也由薛等人(2021年)实现,但只针对单一的非线性非线性方程式。第二,目前的算法可以处理任何稀有的、可倒数的矩阵(模型消散化),如果它具有负的log-log-log-ormal-al21号(包括普通的20-stal-al-al21号)。