Linear regression is a widely used technique to fit linear models and finds widespread applications across different areas such as machine learning and statistics. In most real-world scenarios, however, linear regression problems are often ill-posed or the underlying model suffers from overfitting, leading to erroneous or trivial solutions. This is often dealt with by adding extra constraints, known as regularization. In this paper, we use the frameworks of block-encoding and quantum singular value transformation (QSVT) to design the first quantum algorithms for quantum least squares with general $\ell_2$-regularization. These include regularized versions of quantum ordinary least squares, quantum weighted least squares, and quantum generalized least squares. Our quantum algorithms substantially improve upon prior results on quantum ridge regression (polynomial improvement in the condition number and an exponential improvement in accuracy), which is a particular case of our result. To this end, we assume approximate block-encodings of the underlying matrices as input and use robust QSVT algorithms for various linear algebra operations. In particular, we develop a variable-time quantum algorithm for matrix inversion using QSVT, where we use quantum eigenvalue discrimination as a subroutine instead of gapped phase estimation. This ensures that substantially fewer ancilla qubits are required for this procedure than prior results. Owing to the generality of the block-encoding framework, our algorithms are applicable to a variety of input models and can also be seen as improved and generalized versions of prior results on standard (non-regularized) quantum least squares algorithms.
翻译:线性回归是一种广泛应用的技术,用于适应线性模型,并发现在机器学习和统计等不同领域广泛应用。然而,在大多数现实世界情景中,线性回归问题往往被错误掩盖,或者基础模型被过度配置,导致错误或微不足道的解决方案。这往往通过增加额外的限制(称为正规化)来解决。在本文中,我们使用块编码框架和量单值转换(QSVT)来设计第一个量子最小方的量子算法,使用通用的 $\ell_2美元种类的常规化。其中包括普通普通平方、量加权最低平方和定量通用最低平方。我们的量衡算法在之前的量级回归结果(条件数的极性改善和精确度的指数改进)中有很大改进,这是我们结果的一个特别的例子。我们假设基础矩阵的大致成块值,在各种直线性平价值操作中使用强大的QS-加权最低平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方