Automated vehicle (AV) acceptance relies on their understanding via feedback. While visualizations aim to enhance user understanding of AV's detection, prediction, and planning functionalities, establishing an optimal design is challenging. Traditional "one-size-fits-all" designs might be unsuitable, stemming from resource-intensive empirical evaluations. This paper introduces OptiCarVis, a set of Human-in-the-Loop (HITL) approaches using Multi-Objective Bayesian Optimization (MOBO) to optimize AV feedback visualizations. We compare conditions using eight expert and user-customized designs for a Warm-Start HITL MOBO. An online study (N=117) demonstrates OptiCarVis's efficacy in significantly improving trust, acceptance, perceived safety, and predictability without increasing cognitive load. OptiCarVis facilitates a comprehensive design space exploration, enhancing in-vehicle interfaces for optimal passenger experiences and broader applicability.
翻译:暂无翻译