One popular way to compute the CANDECOMP/PARAFAC (CP) decomposition of a tensor is to transform the problem into a sequence of overdetermined least squares subproblems with Khatri-Rao product (KRP) structure involving factor matrices. In this work, based on choosing the factor matrix randomly, we propose a mini-batch stochastic gradient descent method with importance sampling for those special least squares subproblems. Two different sampling strategies are provided. They can avoid forming the full KRP explicitly and computing the corresponding probabilities directly. The adaptive step size version of the method is also given. For the proposed method, we present its detailed theoretical properties and comprehensive numerical performance. The results on synthetic and real data show that our method performs better than the corresponding one in the literature.
翻译:计算CANDECOMP/PARAFAC(CP)分解压力的流行方法之一是将问题转化成一个与Khatri-Rao产品(KRP)结构有关的、涉及要素矩阵的、确定得过高的最平方次问题序列。在这项工作中,根据随机选择系数矩阵,我们建议了一种微型抽取梯度梯度梯度下降法,对这些特殊最低方次问题进行重要取样。提供了两种不同的抽样战略。它们可以避免形成完整的 KRP,直接计算相应的概率。还给出了该方法的适应性步数版。关于拟议方法,我们介绍了其详细的理论属性和综合数字性能。合成和真实数据的结果显示,我们的方法比文献中的相应方法要好。