Bergsma (2006) proposed a covariance $\kappa$(X,Y) between random variables X and Y. He derived their asymptotic distributions under the null hypothesis of independence between X and Y . The non-null (dependent) case does not seem to have been studied in the literature. We derive several alternate expressions for $\kappa$. One of them leads us to a very intuitive estimator of $\kappa$(X,Y) that is a nice function of four naturally arising U-statistics. We derive the exact finite sample relation between all three estimates. The asymptotic distribution of our estimator, and hence also of the other two estimators, in the non-null (dependence) case, is then obtained by using the U-statistics central limit theorem. The exact value of $\kappa$(X,Y) is hard to calculate for most bivariate distributions. Here we provide detailed derivation of $\kappa$ for two well known parametric families, namely, the bivariate exponential and the bivariate normal distributions. Using these we carry out extensive simulation to study the properties of these estimates with a focus on the non-null case. In the null case, the limit is known to be degenerate. However with a higher scaling, the non-degenerate limit distribution of our estimator is again obtained using the theory of degenerate U-statistics. This quickly leads us also to the known asymptotic distribution results for the two estimates of Bergsma in the null case. We used simulation techniques for the null case to investigate the accuracies of the discrete approximation method.
翻译:Bergsma(2006年)在随机变数X和Y之间提出了一个 $\ kappa$( X, Y) 的常数变量 。 他根据X和Y之间独立无效的假设, 得出了它们的空虚分布。 文献中似乎没有研究非核( 独立) 案例。 我们从中得出了数种不同的表达方式 $\ kappa$( X, Y ) 。 其中之一让我们发现一个非常直观的估测 $\ kappa$( X, Y ) 的准确值, 这是四个自然生成的U- Statistic 。 我们从所有三个估计之间得出精确的有限样本关系。 我们的估算者, 以及另外两个无核标者, 在非核标者( 独立) 的无核( 独立) 案例中, 我们的无核统计者( ) 的直径比亚( ) 的分布方式, 也是用来计算最精确的精确值 。 这里我们提供了两个已知的参数的精确的样本 。