Let $(X, d)$ be a metric space and $C \subseteq 2^X$ -- a collection of special objects. In the $(X,d,C)$-chasing problem, an online player receives a sequence of online requests $\{B_t\}_{t=1}^T \subseteq C$ and responds with a trajectory $\{x_t\}_{t=1}^T$ such that $x_t \in B_t$. This response incurs a movement cost $\sum_{t=1}^T d(x_t, x_{t-1})$, and the online player strives to minimize the competitive ratio -- the worst case ratio over all input sequences between the online movement cost and the optimal movement cost in hindsight. Under this setup, we call the $(X,d,C)$-chasing problem $\textit{chaseable}$ if there exists an online algorithm with finite competitive ratio. In the case of Convex Body Chasing (CBC) over real normed vector spaces, (Bubeck et al. 2019) proved the chaseability of the problem. Furthermore, in the vector space setting, the dimension of the ambient space appears to be the factor controlling the size of the competitive ratio. Indeed, recently, (Sellke 2020) provided a $d-$competitive online algorithm over arbitrary real normed vector spaces $(\mathbb{R}^d, ||\cdot||)$, and we will shortly present a general strategy for obtaining novel lower bounds of the form $\Omega(d^c), \enspace c > 0$, for CBC in the same setting. In this paper, we also prove that the $\textit{doubling}$ and $\textit{Assouad}$ dimensions of a metric space exert no control on the hardness of ball chasing over the said metric space. More specifically, we show that for any large enough $\rho \in \mathbb{R}$, there exists a metric space $(X,d)$ of doubling dimension $\Theta(\rho)$ and Assouad dimension $\rho$ such that no online selector can achieve a finite competitive ratio in the general ball chasing regime.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员