The maximum coverage problem is to select $k$ sets from a collection of sets such that the cardinality of the union of the selected sets is maximized. We consider $(1-1/e-\epsilon)$-approximation algorithms for this NP-hard problem in three standard data stream models. 1. {\em Dynamic Model.} The stream consists of a sequence of sets being inserted and deleted. Our multi-pass algorithm uses $\epsilon^{-2} k \cdot \text{polylog}(n,m)$ space. The best previous result (Assadi and Khanna, SODA 2018) used $(n +\epsilon^{-4} k) \text{polylog}(n,m)$ space. While both algorithms use $O(\epsilon^{-1} \log n)$ passes, our analysis shows that when $\epsilon$ is a constant, it is possible to reduce the number of passes by a $1/\log \log n$ factor without incurring additional space. 2. {\em Random Order Model.} In this model, there are no deletions and the sets forming the instance are uniformly randomly permuted to form the input stream. We show that a single pass and $k \text{polylog}(n,m)$ space suffices for arbitrary small constant $\epsilon$. The best previous result, by Warneke et al.~(ESA 2023), used $k^2 \text{polylog}(n,m)$ space. 3. {\em Insert-Only Model.} Lastly, our results, along with numerous previous results, use a sub-sampling technique introduced by McGregor and Vu (ICDT 2017) to sparsify the input instance. We explain how this technique and others used in the paper can be implemented such that the amortized update time of our algorithm is polylogarithmic. This also implies an improvement of the state-of-the-art insert only algorithms in terms of the update time: $\text{polylog}(m,n)$ update time suffices whereas the best previous result by Jaud et al.~(SEA 2023) required update time that was linear in $k$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员