Transfer learning (TL) from pretrained deep models is a standard practice in modern medical image classification (MIC). However, what levels of features to be reused are problem-dependent, and uniformly finetuning all layers of pretrained models may be suboptimal. This insight has partly motivated the recent \emph{differential} TL strategies, such as TransFusion (TF) and layer-wise finetuning (LWFT), which treat the layers in the pretrained models differentially. In this paper, we add one more strategy into this family, called \emph{TruncatedTL}, which reuses and finetunes appropriate bottom layers and directly discards the remaining layers. This yields not only superior MIC performance but also compact models for efficient inference, compared to other differential TL methods. We validate the performance and model efficiency of TruncatedTL on three MIC tasks covering both 2D and 3D images. For example, on the BIMCV COVID-19 classification dataset, we obtain improved performance with around $1/4$ model size and $2/3$ inference time compared to the standard full TL model. Code is available at https://github.com/sun-umn/Transfer-Learning-in-Medical-Imaging.


翻译:从经过预先训练的深层模型中传授学习(TL)是现代医学图像分类(MIC)的标准做法。然而,哪些特性水平需要再利用,取决于问题,统一微调所有经过训练的模型层可能不够理想。这种洞察力部分地推动了最近的TL战略,如TransFusion(TF)和分层微调(LWFT),这些战略以不同的方式处理预先训练的模型中的层。在本文中,我们在这个家族中增加了一个战略,称为\emph{TruncatedTL},即重新利用和微调适当的底层和微调,直接抛弃其余的层。这与其它差别TL方法相比,不仅产生较高的MIC性能,而且还产生高效推断的紧凑模型。我们验证了TruncedTL在涉及2D和3D图像的三个MIC任务方面的性能和模型效率。例如BIMCV COVID-19分类数据集,我们得到了改进的性能,大约1/4美元的模型大小和2.3/unference/imes。Misional commaxalalalal am-commal codeal 。在可得到的完整TL.Mismaxal am-modeal exm-modeal exm-modeal exm-modeal sal adal am-modeal-mode.

0
下载
关闭预览

相关内容

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年1月29日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员