For testing conditional independence (CI) of a response Y and a predictor X given covariates Z, the recently introduced model-X (MX) framework has been the subject of active methodological research, especially in the context of MX knockoffs and their successful application to genome-wide association studies. In this paper, we study the power of MX CI tests, yielding quantitative explanations for empirically observed phenomena and novel insights to guide the design of MX methodology. We show that any valid MX CI test must also be valid conditionally on Y and Z; this conditioning allows us to reformulate the problem as testing a point null hypothesis involving the conditional distribution of X. The Neyman-Pearson lemma then implies that the conditional randomization test (CRT) based on a likelihood statistic is the most powerful MX CI test against a point alternative. We also obtain a related optimality result for MX knockoffs. Switching to an asymptotic framework with arbitrarily growing covariate dimension, we derive an expression for the limiting power of the CRT against local semiparametric alternatives in terms of the prediction error of the machine learning algorithm on which its test statistic is based. Finally, we exhibit a resampling-free test with uniform asymptotic Type-I error control under the assumption that only the first two moments of X given Z are known, a significant relaxation of the MX assumption.


翻译:对于测试答复Y和预测者X的有条件独立性(CI)测试,最近推出的模型-X(MX)框架一直是积极的方法研究的主题,特别是在MX淘汰及其成功应用于整个基因组协会研究的背景下,最近推出的模型-X(MX)框架一直是积极的方法研究的主题。在本文中,我们研究了MXCI测试的力量,对经验观察到的现象提出了定量解释,并提出了指导MX方法设计的新见解。我们显示,任何有效的MXCI测试也必须在Y和Z的有条件条件下有效;这一条件使我们能够重新界定问题,以测试一个与X有条件分布有关的完全的假设点。 Neyman-Pearson Lemma(Neyman-Pearson Lemma)随后意味着,基于可能的统计数字的有条件随机化测试(CRT)是针对某个点的最为有力的MXCI测试。我们还获得了一个相关的最佳结果,以指导MX方法的设计。我们从任意增长的变异性层面转向一个简单框架,我们提出了限制CRT对当地半参数替代方法的替代方法,以X自由分配的预测误差值为X。根据可能统计测测测测测算的模型,最终以机测算为我们所测测测测测测得的模型。

0
下载
关闭预览

相关内容

Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
46+阅读 · 2022年2月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月29日
Arxiv
0+阅读 · 2022年6月29日
Arxiv
0+阅读 · 2022年6月24日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员