Image-based virtual try-on aims to synthesize an image of a person wearing a given clothing item. To solve the task, the existing methods warp the clothing item to fit the person's body and generate the segmentation map of the person wearing the item, before fusing the item with the person. However, when the warping and the segmentation generation stages operate individually without information exchange, the misalignment between the warped clothes and the segmentation map occurs, which leads to the artifacts in the final image. The information disconnection also causes excessive warping near the clothing regions occluded by the body parts, so called pixel-squeezing artifacts. To settle the issues, we propose a novel try-on condition generator as a unified module of the two stages (i.e., warping and segmentation generation stages). A newly proposed feature fusion block in the condition generator implements the information exchange, and the condition generator does not create any misalignment or pixel-squeezing artifacts. We also introduce discriminator rejection that filters out the incorrect segmentation map predictions and assures the performance of virtual try-on frameworks. Experiments on a high-resolution dataset demonstrate that our model successfully handles the misalignment and the occlusion, and significantly outperforms the baselines. Code is available at https://github.com/sangyun884/HR-VITON.
翻译:以图像为基础的虚拟试镜旨在合成身着特定衣物的人的图像。 为了解决问题, 现有方法将衣物项目扭曲为适合个人身体, 并生成穿戴该衣物的人的分解图, 然后再与个人对着该件。 但是, 当扭曲和分解生成阶段单独运行时, 没有信息交流, 扭曲的衣服和分解图之间出现调错配, 导致最终图像中的艺术品。 信息断开还导致在被身体部分覆盖的服装区附近发生过度扭曲, 也就是所谓的像素- 挤压工艺品。 为了解决问题, 我们提议将新型的试样条件生成器作为两个阶段( 即扭曲和分解生成阶段) 的统一模块。 新提议的状态生成器中的特征融合块可以实施信息交流, 且条件生成器不会造成任何不匹配或像素- queez 工艺品。 我们还引入了歧视者拒绝将错误的分解器过滤出不正确的 HR 解剖图, 也就是所谓的虚拟试判框架 。