We introduce Doctor XAvIer, a BERT-based diagnostic system that extracts relevant clinical data from transcribed patient-doctor dialogues and explains predictions using feature attribution methods. We present a novel performance plot and evaluation metric for feature attribution methods: Feature Attribution Dropping (FAD) curve and its Normalized Area Under the Curve (N-AUC). FAD curve analysis shows that integrated gradients outperforms Shapley values in explaining diagnosis classification. Doctor XAvIer outperforms the baseline with 0.97 F1-score in named entity recognition and symptom pertinence classification and 0.91 F1-score in diagnosis classification.
翻译:我们引入了XAvIer医生,这是一个基于BERT的诊断系统,它从转录的病人-医生对话中提取相关临床数据,并用特征归属方法解释预测,我们为特征归属方法提出了新的性能图和评估指标:特征归因曲线下的特征归因曲线(FAD)曲线及其正常区域。FAD曲线分析表明,在解释诊断分类时,综合梯度优于形状值。XAVIer医生超越了基线,在指定实体识别和症状对应性分类中为0.97 F1分数,在诊断分类中为0.91 F1分数。